내용 |
Cover page -- Title page -- Copyright page -- About the Authors -- To Jeanne -- Contents -- Preface -- Acknowledgments -- Chapter 1 Introduction -- 1.1 Preliminary Remarks -- 1.2 The Concept of a Fluid -- 1.3 The Fluid as a Continuum -- 1.4 Dimensions and Units -- 1.5 System and Control Volume -- 1.6 Thermodynamic Properties of a Fluid -- 1.7 Viscosity and Other Secondary Properties -- 1.8 Flow Patterns: Streamlines, Pathlines, and Streaklines -- 1.9 Basic Flow Analysis Techniques -- 1.10 The Fundamentals of Engineering (FE) Examination -- 1.11 The History of Fluid Mechanics -- Summary -- Problems -- Fundamentals of Engineering Exam Problems -- Comprehensive Problems -- References -- Chapter 2 Pressure Distribution in a Fluid -- 2.1 Pressure and Pressure Gradient -- 2.2 Equilibrium of a Fluid Element -- 2.3 Hydrostatic Pressure Distributions -- 2.4 Application to Manometry -- 2.5 Hydrostatic Forces on Plane Surfaces -- 2.6 Hydrostatic Forces on Curved Surfaces -- 2.7 Hydrostatic Forces in Layered Fluids -- 2.8 Buoyancy and Stability -- 2.9 Pressure Distribution in Rigid-Body Motion -- 2.10 Pressure Measurement -- Summary -- Problems -- Word Problems -- Fundamentals of Engineering Exam Problems -- Comprehensive Problems -- Design Projects -- References -- Chapter 3 Integral Relations for a Control Volume 134 -- 3.1 Basic Physical Laws of Fluid Mechanics -- 3.2 The Reynolds Transport Theorem -- 3.3 Conservation of Mass -- 3.4 The Linear Momentum Equation -- 3.5 Frictionless Flow: The Bernoulli Equation -- 3.6 The Angular Momentum Theorem -- 3.7 The Energy Equation -- Summary -- Problems -- Word Problems -- Fundamentals of Engineering Exam Problems -- Comprehensive Problems -- Design Project -- References -- Chapter 4 Differential Relations for Fluid Flow 228 -- 4.1 The Acceleration Field of a Fluid.
4.2 The Differential Equation of Mass Conservation -- 4.3 The Differential Equation of Linear Momentum -- 4.4 The Differential Equation of Angular Momentum -- 4.5 The Differential Equation of Energy -- 4.6 Boundary Conditions for the Basic Equations -- 4.7 The Stream Function -- 4.8 Vorticity and Irrotationality -- 4.9 Frictionless Irrotational Flows -- 4.10 Some Illustrative Incompressible Viscous Flows -- Summary -- Problems -- Word Problems -- Fundamentals of Engineering Exam Problems -- Comprehensive Problems -- References -- Chapter 5 Dimensional Analysis and Similarity 294 -- 5.1 Introduction -- 5.2 The Principle of Dimensional Homogeneity -- 5.3 The Pi Theorem -- 5.4 Nondimensionalization of the Basic Equations -- 5.5 Modeling and Similarity -- Summary -- Problems -- Word Problems -- Fundamentals of Engineering Exam Problems -- Comprehensive Problems -- Design Projects -- References -- Chapter 6 Viscous Flow in Ducts 346 -- 6.1 Reynolds Number Regimes -- 6.2 Internal Viscous Flows -- 6.3 Head Loss-The Friction Factor -- 6.4 Laminar Fully Developed Pipe Flow -- 6.5 Turbulence Modeling -- 6.6 Turbulent Pipe Flow -- 6.7 Four Types of Pipe Flow Problems -- 6.8 Flow in Noncircular Ducts -- 6.9 Minor or Local Losses in Pipe Systems -- 6.10 Multiple-Pipe Systems -- 6.11 Experimental Duct Flows: Diffuser Performance -- 6.12 Fluid Meters -- Summary -- Problems -- Word Problems -- Fundamentals of Engineering Exam Problems -- Comprehensive Problems -- Design Projects -- References -- Chapter 7 Flow Past Immersed Bodies 458 -- 7.1 Reynolds Number and Geometry Effects -- 7.2 Momentum Integral Estimates -- 7.3 The Boundary Layer Equations -- 7.4 The Flat-Plate Boundary Layer -- 7.5 Boundary Layers with Pressure Gradient -- 7.6 Drag of Two- and Three-Dimensional Bodies -- 7.7 Forces on Lifting Bodies -- Summary -- Problems -- Word Problems.
Fundamentals of Engineering Exam Problems -- Comprehensive Problems -- Design Project -- References -- Chapter 8 Potential Flow 532 -- 8.1 Introduction and Review -- 8.2 Elementary Plane Flow Solutions -- 8.3 Superposition of Plane Flow Solutions -- 8.4 Plane Flow Past Closed-Body Shapes -- 8.5 Other Plane Potential Flows -- 8.6 Images -- 8.7 Airfoil Theory -- 8.8 Axisymmetric Potential Flow -- Summary -- Problems -- Word Problems -- Comprehensive Problems -- Design Projects -- References -- Chapter 9 Compressible Flow 594 -- 9.1 Introduction: Review of Thermodynamics -- 9.2 The Speed of Sound -- 9.3 Adiabatic and Isentropic Steady Flow -- 9.4 Isentropic Flow with Area Changes -- 9.5 The Normal Shock Wave -- 9.6 Operation of Converging and Diverging Nozzles -- 9.7 Compressible Duct Flow with Friction -- 9.8 Frictionless Duct Flow with Heat Transfer -- 9.9 Mach Waves and Oblique Shock Waves -- 9.10 Prandtl-Meyer Expansion Waves -- Summary -- Problems -- Word Problems -- Fundamentals of Engineering Exam Problems -- Comprehensive Problems -- Design Projects -- References -- Chapter 10 Open-Channel Flow 686 -- 10.1 Introduction -- 10.2 Uniform Flow -- The Che'zy Formula and the Manning Formula -- 10.3 Efficient Uniform-Flow Channels -- 10.4 Specific Energy -- Critical Depth -- 10.5 The Hydraulic Jump -- 10.6 Gradually Varied Flow -- 10.7 Flow Measurement and Control by Weirs -- Summary -- Problems -- Word Problems -- Fundamentals of Engineering Exam Problems -- Comprehensive Problems -- Design Projects -- References -- Chapter 11 Turbomachinery 746 -- 11.1 Introduction and Classification -- 11.2 The Centrifugal Pump -- 11.3 Pump Performance Curves and Similarity Rules -- 11.4 Mixed- and Axial-Flow Pumps: The Specific Speed -- 11.5 Matching Pumps to System Characteristics -- 11.6 Turbines -- Summary -- Problems -- Word Problems -- Comprehensive Problems.
Design Project -- References -- Appendix A Physical Properties of Fluids -- Appendix B Compressible Flow Tables -- Appendix C Conversion Factors -- Appendix D Equations of Motion in Cylindrical Coordinates -- Appendix E Estimating Uncertainty in Experimental Data -- Appendix F Numerical Methods -- Answers to Selected Problems -- Index -- Conversion Factors -- Moody Chart.
|