내용 |
1. Introduction -- 1.1. Introduction -- 1.2. A few words on quantum mechanics -- 1.3. Ward's observation -- 1.4. History of quantum entanglement -- 1.5. The field of quantum entanglement -- 1.6. Fundamentals of Quantum Entanglement -- 1.7. Intent
2. Dirac's contribution -- 2.1. Introduction -- 2.2. Dirac's pair theory -- 2.3. Dirac's notation -- 2.4. Dirac's notation in N-slit interferometers -- 2.5. Semi coherent interference -- 2.6. From quantum probabilities to measurable intensities -- 2.7. Dirac's identities
3. The Einstein-Podolsky-Rosen (EPR) paper -- 3.1. Introduction -- 3.2. EPR's doubts on quantum mechanics -- 3.3. EPR's definition of a correct theory
4. The Schr?dinger papers -- 4.1. Introduction -- 4.2. The first Schr?dinger paper -- 4.3. The second Schr?dinger paper
5. Wheeler's paper -- 5.1. Introduction -- 5.2. Wheeler's paper's significance to quantum theory -- 5.3. Wheeler's paper's significance to quantum experiments
6. The probability amplitude for quantum entanglement -- 6.1. Introduction -- 6.2. The Pryce-Ward paper -- 6.3. Ward's doctoral thesis -- 6.4. Summary
7. The quantum entanglement experiment -- 7.1. Introduction -- 7.2. The quantum entanglement experiment -- 7.3. Historical notes
8. The annihilation quantum entanglement experiments -- 8.1. Introduction -- 8.2. The first three quantum entanglement experiments -- 8.3. Further significance of the annihilation experiments
9. The Bohm and Aharonov paper -- 9.1. Introduction -- 9.2. Significance to the development of quantum entanglement research -- 9.3. Philosophy and physics
10. Bell's theorem -- 10.1. Introduction -- 10.2. von Neumann's work -- 10.3. Bell's theorem or Bell's inequalities -- 10.4. An additional perspective on Bell's theorem -- 10.5. Example -- 10.6. More philosophy and physics
11. Feynman's Hamiltonians -- 11.1. Introduction -- 11.2. Probability amplitudes via Hamiltonians ? la Feynman -- 11.3. Arrival to quantum entanglement probability amplitudes -- 11.4. Discussion
12. The second Wu quantum entanglement experiment -- 12.1. Introduction -- 12.2. Salient features -- 12.3. Bell's theorem and hidden variables
13. The hidden variable theory experiments -- 13.1. Introduction -- 13.2. Testing for local hidden variable theories -- 13.3. Early optical experiment -- 13.4. Observations and discussion
14. The optical quantum entanglement experiments -- 14.1. Introduction -- 14.2. The Aspect experiments -- 14.3. Observations and discussion
15. The quantum entanglement probability amplitude 1947-1992 -- 15.1. Introduction -- 15.2. The quantum entanglement probability amplitude 1947-92 -- 15.3. Observations and discussion
16. The GHZ probability amplitudes -- 16.1. Introduction -- 16.2. The GHZ probability amplitudes -- 16.3. Observations and discussion
17. The interferometric derivation of the quantum entanglement probability amplitude for n = N = 2 -- 17.1. Introduction -- 17.2. The meaning of the Dirac-Feynman probability amplitude -- 17.3. The derivation of the quantum entanglement probability amplitude -- 17.4. Identical states of polarization -- 17.5. Discussion
18. The interferometric derivation of the quantum entanglement probability amplitude for n = N = 2p1s, 2p2s, 2p3s, 2p4s, ... 2prs -- 18.1. Introduction -- 18.2. The quantum entanglement probability amplitude for n = N = 4 -- 18.3. The quantum entanglement probability amplitude for n = N = 8 -- 18.4. The quantum entanglement probability amplitude for n = N = 16 -- 18.5. The quantum entanglement probability amplitude for n = N = 2p1s, 2p2s, 2p3s, 2p4s ...2prs -- 18.6. Discussion
19. The interferometric derivation of the quantum entanglement probability amplitudes for n = N = 3, 6 -- 19.1. Introduction -- 19.2. The quantum entanglement probability amplitude for n = N = 3 -- 19.3. The quantum entanglement probability amplitude for n = N = 6 -- 19.4. Discussion
20. What happens with the entanglement at n = 1 and N = 2? -- 20.1. Introduction -- 20.2. Reversibility : from entanglement to interference -- 20.3. Schematics -- 20.4. Experimental and theoretical perspectives -- 20.5. Interference for N slits and n = 1
21. Quantum entanglement probability amplitudes and Bell's theorem -- 21.1. Introduction -- 21.2. Probability amplitudes -- 21.3. Quantum polarization -- 21.4. Quantum probabilities and Bell's theorem -- 21.5. Example -- 21.6. Discussion
22. Cryptography via quantum entanglement -- 22.1. Introduction -- 22.2. Measurement protocol -- 22.3. Experiments
23. Quantum entanglement and teleportation -- 23.1. Introduction -- 23.2. The mechanics of teleportation -- 23.3. Technology
24. Quantum entanglement and quantum computing -- 24.1. Introduction -- 24.2. Entropy -- 24.3. Qbits -- 24.4. Quantum entanglement and Pauli matrices -- 24.5. Pauli matrices and quantum entanglement -- 24.6. Quantum gates -- 24.7. The Hadamard matrix and quantum entanglement -- 24.8. Multiple entangled states -- 24.9. Technology
25. Space-to-space and space-to-Earth communications via quantum entanglement -- 25.1. Introduction -- 25.2. Space-to-space configurations -- 25.3. The space-to-Earth experiment -- 25.4. Further horizons
26. Space-to-space quantum interferometric communications : an alternative to quantum entanglement communications? -- 26.1. Introduction -- 26.2. The generalized N-slit quantum interference equations -- 26.3. The generation and transmission of interferometric characters -- 26.4. The inherent quantum security mechanism -- 26.5. Discussion
27. Quanta pair sources for quantum entanglement experiments -- 27.1. Introduction -- 27.2. Positron-electron annihilation -- 27.3. Atomic Ca emission -- 27.4. Type I SPDC -- 27.5. Type II SPDC -- 27.6. Further horizons
28. More on quantum entanglement -- 28.1. Introduction -- 28.2. Consequences of the EPR paper -- 28.3. Hidden variable theories -- 28.4. The perspectives of EPR and Schr?dinger on quantum entanglement -- 28.5. Indistinguishability and Dirac's identities -- 28.6. Photon non-locality -- 28.7. Discussion
29. On the interpretation of quantum mechanics -- 29.1. Introduction -- 29.2. Quantum critical -- 29.3. Pragmatic perspective -- 29.4. Fundamental principles -- 29.5. The Dirac-Feynman-Lamb doctrine -- 29.6. The importance of the probability amplitude -- 29.7. The best interpretation of quantum mechanics -- 29.8. Discussion.
|