서지주요정보
Notes on Continuum Mechanics [electronic resource]
서명 / 저자 Notes on Continuum Mechanics [electronic resource] / by Eduardo W. V. Chaves.
저자명 Chaves, Eduardo W. V
단체명 Chaves, Eduardo W. V
발행사항 Dordrecht : Springer Netherlands : Imprint: Springer, 2013.
총서명 Lecture Notes on Numerical Methods in Engineering and Sciences, 1877-7341
Online Access http://dx.doi.org/10.1007/978-94-007-5986-2URL

서지기타정보

서지기타정보
청구기호 TA405-409.3
형태사항 700 p. 220 illus. online resource.
언어 English
내용 Preface -- Abbreviations -- Operators And Symbols -- Si-Units -- Introduction -- 1 Mechanics -- 2 What Is Continuum Mechanics -- 3 Scales Of Material Studies -- 4 The Initial Boundary Value Problem (Ibvp) -- 1 Tensors -- 1.1 Introduction -- 1.2 Algebraic Operations With Vectors -- 1.3 Coordinate Systems -- 1.4 Indicial Notation -- 1.5 Algebraic Operations With Tensors -- 1.6 The Tensor-Valued Tensor Function -- 1.7 The Voigt Notation -- 1.8 Tensor Fields -- 1.9 Theorems Involving Integrals -- Appendix A: A Graphical Representation Of A Second-Order Tensor -- A.1 Projecting A Second-Order Tensor Onto A Particular Direction -- A.2 Graphical Representation Of An Arbitrary Second-Order Tensor -- A.3 The Tensor Ellipsoid -- A.4 Graphical Representation Of The Spherical And Deviatoric Parts -- 2 Continuum Kinematics -- 2.1 Introduction -- 2.2 The Continuous Medium -- 2.3 Description Of Motion -- 2.4 The Material Time Derivative -- 2.5 The Deformation Gradient -- 2.6 Finite Strain Tensors -- 2.7 Particular Cases Of Motion -- 2.8 Polar Decomposition Of F -- 2.9 Area And Volume Elements Deformation -- 2.10 Material And Control Domains -- 2.11 Transport Equations -- 2.12 Circulation And Vorticity -- 2.13 Motion Decomposition: Volumetric And Isochoric Motions -- 2.14 The Small Deformation Regime -- 2.15 Other Ways To Define Strain -- 3 Stress -- 3.1 Introduction -- 3.2 Forces -- 3.3 Stress Tensors -- 4 Objectivity Of Tensors -- 4.1 Introduction -- 4.2 The Objectivity Of Tensors -- 4.3 Tensor Rates -- 5 The Fundamental Equations Of Continuum Mechanics -- 5.1 Introduction -- 5.2 Density -- 5.3 Flux -- 5.4 The Reynolds Transport Theorem -- 5.5 Conservation Law -- 5.6 The Principle Of Conservation Of Mass. The Mass Continuity Equation -- 5.7 The Principle Of Conservation Of Linear Momentum. The Equations Of Motion -- 5.8 The Principle Of Conservation Of Angular Momentum. Symmetry Of The Cauchy Stress Tensor.-�5.9 The Principle Of Conservation Of Energy. The Energy Equation -- 5.10 The Principle Of Irreversibility. Entropy Inequality -- 5.11 Fundamental Equations Of Continuum Mechanics -- 5.12 Flux Problems -- 5.13 Fluid Flow In Porous Media (Filtration) -- 5.14 The Convection-Diffusion Equation -- 5.15 Initial Boundary Value Problem (Ibvp) And Computational Mechanics -- 6 Introduction To Constitutive Equations -- 6.1 Introduction -- 6.2 The Constitutive Principles -- 6.3 Characterization Of Constitutive Equations For Simple Thermoelastic Materials -- 6.4 Characterization Of The Constitutive Equations For A Thermoviscoelastic Material -- 6.5 Some Experimental Evidence -- 7 Linear Elasticity -- 7.1 Introduction -- 7.2 Initial Boundary Value Problem Of Linear Elasticity -- 7.3 Generalized Hooke's Law -- 7.4 The Elasticity Tensor -- 7.5 Isotropic Materials -- 7.6 Strain Energy Density -- 7.7 The Constitutive Law For Orthotropic Material -- 7.8 Transversely Isotropic Materials -- 7.9 The Saint-Venant's And Superposition Principles -- 7.10 Initial Stress/Strain -- 7.11 The Navier-Lam챕 Equations -- 7.12 Two-Dimensional Elasticity -- 7.13 The Unidimensional Approach -- 8 Hyperelasticity -- 8.1 Introduction -- 8.2 Constitutive Equations -- 8.3 Isotropic Hyperelastic Materials.-�8.4 Compressible Materials -- 8.5 Incompressible Materials -- 8.6 Examples Of Hyperelastic Models -- �8.7 Anisotropic Hyperelasticity -- 9 Plasticity -- 9.1 Introduction -- 9.2 The Yield Criterion -- 9.3 Plasticity Models In Small Deformation Regime (Uniaxial Cases) -- 9.4 Plasticity In Small Deformation Regime (The Classical Plasticity Theory) -- 9.5 Plastic Potential Theory -- 9.6 Plasticity In Large Deformation Regime -- 9.7 Large-Deformation Plasticity Based On The Multiplicative Decomposition Of The Deformation Gradient -- 10 Thermoelasticity -- 10.1 Thermodynamic Potentials -- 10.2 Thermomechanical Parameters -- 10.3 Linear Thermoelasticity -- 10.4 The Decoupled Thermo-Mechanical Problem In A Small Deformation Regime -- 10.5 The Classical Theory Of Thermoelasticity In Finite Strain (Large Deformation Regime) -- 10.6 Thermoelasticity Based On The Multiplicative Decomposition Of The Deformation Gradient -- 10.7 Thermoplasticity In A Small Deformation Regime -- 11 Damage Mechanics -- 11.1 Introduction -- 11.2 The Isotropic Damage Model In A Small Deformation Regime -- 11.3 The Generalized Isotropic Damage Model -- 11.4 The Elastoplastic-Damage Model In A Small Deformation Regime -- 11.5 The Tensile-Compressive Plastic-Damage Model -- 11.6 Damage In A Large Deformation Regime -- 12 Introduction To Fluids -- 12.1 Introduction -- 12.2 Fluids At Rest And In Motion -- 12.3 Viscous And Non-Viscous Fluids -- 12.4 Laminar Turbulent Flow -- 12.5 Particular Cases -- 12.6 Newtonian Fluids -- 12.7 Stress, Dissipated And Recoverable Powers -- 12.8 The Fundamental Equations For Newtonian Fluids -- Bibliography -- Index.
주제 Engineering.
Mechanics.
Materials.
Engineering.
Continuum Mechanics and Mechanics of Materials.
Engineering Thermodynamics, Heat and Mass Transfer.
Mechanics.
보유판 및 특별호 저록 Springer eBooks
ISBN 9789400759862
기타 표준번호 10.1007/978-94-007-5986-2
QR CODE

책소개

전체보기

목차

전체보기

이 주제의 인기대출도서