내용 |
1. Introduction -- 1.1 Why information seeking is so important to us --
2. The query process and barriers to finding information online -- 2.1 The query process -- 2.2 Query problems --
3. Online search: an evolution -- 3.1 History -- 3.2 The shifting information landscape: 2000-2012 -- 3.2.1 End users as searchers -- 3.2.2 Changes in information seeking -- 3.2.3 State of the art today --
4. Search and discovery technologies: an overview -- 4.1 Online information access systems -- 4.2 Search and discovery technologies -- 4.3 Types of search systems -- 4.4 The information retrieval process -- 4.5 Search and content analytics -- 4.6 Collecting information for searching or analysis -- 4.7 Search engines: the index and the matching engine -- 4.8 Presenting the results: what is "relevance?" -- 4.8.1 Beyond the document list -- 4.9 Categorization, classification, clustering, and faceted search -- 4.9.1 Automatic vs. manual categorization -- 4.10 Natural language processing (NLP) and content analytics -- 4.11 Time, sentiment, and geo-location -- 4.12 NLP in information retrieval -- 4.12.1 Some common uses of NLP -- 4.13 Multilingual and cross language search, gisting, and translation -- 4.14 Knowledge bases -- 4.14.1 Rich media search --
5. Information access: a spectrum of needs and uses -- 5.1 Information tasks -- 5.2 Information seekers -- 5.3 Finding the right search technology -- 5.3.1 First questions -- 5.3.2 Information needs assessment checklist -- 5.4 Trade-offs in search and content technologies -- 5.5 Search and content analytics technologies: sample use cases -- 5.5.1 Web search -- 5.5.2 eCommerce search -- 5.5.3 eDiscovery search -- 5.5.4 Enterprise search -- 5.6 Search and content analytics in the enterprise -- 5.6.1 Consumer vs. business search -- 5.7 Trends in enterprise search -- 5.7.1 Unified information access -- 5.7.2 InfoApps and search-based applications -- 5.7.3 Opinion,trend, and sentiment monitoring -- 5.7.4 Question answering systems -- 5.7.5 Site search -- 5.7.6 Mobile search -- 5.8 Enterprise search systems in summary --
6. Future tense: the next era in information access and discovery -- 6.1 Shift to probabilistic computing -- 6.2 Learning systems: machine learning, adaptive systems, predictive analytics, and inferencing -- 6.3 Big data and analytics -- 6.4 Improved information interaction: contextual awareness, conversational systems, and visualization -- 6.5 Complex, highly integrated information platforms --
7. Answer machines -- 7.1 What's an answer machine? -- 7.1.1 Question definition -- 7.1.2 Interaction design -- 7.1.3 Analytics and adaptive learning -- 7.1.4 Complex, highly integrated information platforms -- 7.2 IBM's Watson: an answer machine case study -- 7.2.1 Watson for Jeopardy -- 7.2.2 What's under the hood? -- 7.3 Answer machines and the future -- 7.3.1 What answer machines can't do -- 7.3.2 Implications -- 7.4 Conclusion --
Bibliography -- Author's biography -- Index.
|