내용 |
A higher calling -- The difference between a good data scientist and a great one -- Learn the business -- Understand the real problem -- Get out there -- Sorry, but you can't trust the data -- Make it easy for people to understand your insights -- "When the data leaves off and your intuition takes over -- Take accountability for results -- What does it mean to be 'data-driven' -- Rooting out bias in decision-making -- Teach, teach, teach -- Evaluating data science outputs more formally -- Educating senior leaders -- Putting data science, and data scientists, in the right spots -- Moving up the analytics maturity ladder -- The industrial revolutions and data science -- Epilogue -- Appendix A. Skills of the data scientist -- Appendix B. Data defined -- Appendix C. Questions to help evaluate the outputs of data science -- Appendix D. Ethical considerations and today's data scientist -- Appendix E. Recent technical advances in data science.
|