서지주요정보
유체 역학 system에 대한 형상 최적화 = Minimum-drag shape in two-dimensional viscous flow
서명 / 저자 유체 역학 system에 대한 형상 최적화 = Minimum-drag shape in two-dimensional viscous flow / 김도완.
저자명 김도완 ; Kim, Do-Wan
발행사항 [대전 : 한국과학기술원, 1994].
Online Access 원문보기 원문인쇄

소장정보

등록번호

8004982

소장위치/청구기호

학술문화관(문화관) 보존서고

DMA 94005

휴대폰 전송

도서상태

이용가능

대출가능

반납예정일

초록정보

The problem to find the shape of a body with smallest drag in a flow governed by two-dimensional steady Navier-Stokes equations is considered. The flow is expressed in terms of stream function which satisfies a fourth-order partial differential equation with the biharmonic operator as principal part. The sensitivities of the direct solution up to the second order are derived by the Hadamard method, which is an extension of Fujii's result on the second-order equation. Using adjoint variable approach both the first-order and the second-order necessary conditions for the shape with smallest drag are obtained. An algorithm for the calculation of optimal shape in which the first variations of solutions of direct and adjoint problems are incorporated is proposed. Numerical examples show that the algorithm can produce successfully the optimal shape. The numerical calculations are made at Reynolds numbers of 1, 10, 20 and 40.

서지기타정보

서지기타정보
청구기호 {DMA 94005
형태사항 v, 81 p. : 삽도 ; 26 cm
언어 한국어
일반주기 부록 : A, Lemma 3.2 의 증명. - B, Boundary perturbation method. - C, 경계 적분의 민감도
저자명의 영문표기 : Do-Wan Kim
지도교수의 한글표기 : 김문언
지도교수의 영문표기 : Moon-Uhn Kim
학위논문 학위논문(박사) - 한국과학기술원 : 수학과,
서지주기 참고문헌 : p. 77-81
주제 Reynolds number.
Navier-Stokes equations.
점성 유동. --과학기술용어시소러스
Reynolds수. --과학기술용어시소러스
Navier-Stokes 방정식. --과학기술용어시소러스
Viscous flow.
QR CODE qr code