서지주요정보
러프집합 이론과 사례기반추론을 결합한 기업신용평가 모형 개발 = The development of the credit evaluation model integrating rough set theory and case-based reasoning
서명 / 저자 러프집합 이론과 사례기반추론을 결합한 기업신용평가 모형 개발 = The development of the credit evaluation model integrating rough set theory and case-based reasoning / 유명환.
저자명 유명환 ; Yoo, Myung-Hwan
발행사항 [대전 : 한국과학기술원, 2004].
Online Access 원문보기 원문인쇄

소장정보

등록번호

8015315

소장위치/청구기호

학술문화관(문화관) 보존서고

MGSM 04017

휴대폰 전송

도서상태

이용가능

대출가능

반납예정일

등록번호

9009659

소장위치/청구기호

서울 학위논문 서가

MGSM 04017

휴대폰 전송

도서상태

이용가능

대출가능

반납예정일

초록정보

Credit rating is a significant area of financial management which is of major interest to practitioners, financial and credit analysts. The credit/financial analysts have to investigate an enormous volume of financial and non-financial data of firms, estimate the corresponding credit rating and finally make crucial decisions regarding the financing of firms. Considerable attention has been devoted in this field from the theoretical and academic points of view during the last three decades. Financial and operational researchers have tried to relate the characteristics of a firm (financial ratios and strategic variables) to its credit rating. According to this relationship, the components of credit rating are identified and decision models are developed to assess credit rating and the corresponding creditworthiness of firms as accurately as possible. Although many studies demonstrate that one technique outperforms the others for a given data set, there is often no way to tell a priori which of these techniques will be most effective to solve a specific classification problem. Alternatively, it has been suggested that a better approach to classification problem might be to integrate various learning techniques. Intelligent combining of several learning algorithms and their synergistic use may lead to improving predictive ability. Recently, a number of studies have demonstrated that a hybrid model integrating artificial intelligence approaches such as Artificial Neural Networks, Rule-based system and Case-based Reasoning with other feature selection algorithms can be alternative methodologies for business classification problems. In this article, we propose a hybrid approach using rough set theory as an alternative methodology to select appropriate attributes for case-based reasoning. We use rough set theory to extract knowledge that can guide effective retrievals of useful cases. Our specific interest lies in the stable combining of both rough set theory and case-based reasoning in the problem of corporate credit rating. This thesis is organized as follows: Chapter 1 explains motivations and academic backgrounds of applying integrated model in the field of corporate credit rating. Chapter 2 provides a brief description of various credit rating methodologies. Chapter 3 describes the framework of credit rating models and data set used in the experiments. Chapter 4 elaborates on the process of applying our hybrid approach to the real data set. Finally, Chapter 5 reports the results of corporate credit rating application and discusses the conclusions with future research issues.

서지기타정보

서지기타정보
청구기호 {MGSM 04017
형태사항 vii, 62 p. : 삽도 ; 26 cm
언어 한국어
일반주기 저자명의 영문표기 : Myung-Hwan Yoo
지도교수의 한글표기 : 한인구
지도교수의 영문표기 : In-Goo Han
학위논문 학위논문(석사) - 한국과학기술원 : 경영공학전공,
서지주기 참고문헌 : p. 60-62
주제 러프집합
사례기반추론
기업신용평가
ROUGH SET
CASE-BASED REASONING
CREDIT EVALUATION
QR CODE qr code