서지주요정보
다중 격자 기법을 위한 navier-stokes solver의 수렴 특성에 대한 연구 = A study on the convergence characteristics of navier-stokes solver for the multigrid method
서명 / 저자 다중 격자 기법을 위한 navier-stokes solver의 수렴 특성에 대한 연구 = A study on the convergence characteristics of navier-stokes solver for the multigrid method / 김윤식.
저자명 김윤식 ; Kim, Yoon-Sik
발행사항 [대전 : 한국과학기술원, 2004].
Online Access 원문보기 원문인쇄

소장정보

등록번호

8015465

소장위치/청구기호

학술문화관(문화관) 보존서고

DAE 04004

휴대폰 전송

도서상태

이용가능

대출가능

반납예정일

초록정보

The second-order upwind difference residual operators and implicit preconditioners are analyzed using the linearized 2-D Navier-Stokes equations. The purpose of alternating direction implicit preconditioner is to cluster residual eigenvalues tightly for high frequency Fourier error modes so that optimal-damping of the multistage relaxation can be obtained in the classical full-coarsening multigrid strategy. This study concentrats on the behaviors of the upwind schemes in the high frequency region and the preconditioning capability of the alternating direction implicit preconditioners. A classical second-order upwind scheme and an alternate candidate of the second-order upwind scheme using the multi-dimensional stencil commonly used in the unstructured grid solver are analyzed in the Fourier domain. It is presented that the the second-order upwind scheme using the multi-dimensional stencil approaches to the first-order upwind scheme in the high frequency region. This means that the second-order scheme using the multi-dimensional stencil can be preconditioned better than the classical second-order upwind scheme by the implicit preconditioners based on the first-order upwind scheme, especially in the high frequency region. The preconditioning aspect of the upwind schemes are confirmed by using the Fourier footprints and convex hulls of the preconditioned residual eigenvalues. Two kinds of alternating direction implicit preconditioners, ADI and DDADI preconditioners are compared on the aspect of eigenvalue clustering using the Fourier footprints and convex hulls. While the ADI scheme shows more stable than the other, DDADI preconditioner shows better preconditioning capability than ADI scheme. To verify the present analysis numerical tests are performed for an inviscid transonic flow and turbulent flows past an airfoil. The DDADI preconditioned MUSCL-type linear reconstruction scheme shows best convergence on both cases and linear convergence characteristic from initial to machine accuracy when combined with the multigrid method. The Baldwin-Lomax turbulence model and the Spalart-Allmaras model are compared in the multigrid context to show that the latter has better convergence.

서지기타정보

서지기타정보
청구기호 {DAE 04004
형태사항 vii, 89 p. : 삽도 ; 26 cm
언어 한국어
일반주기 부록 : 제A장, 다중격자 기법을 위한 모드 해석. - 제B장, 예조건화 행렬
저자명의 영문표기 : Yoon-Sik Kim
지도교수의 한글표기 : 권장혁
지도교수의 영문표기 : Jang-Hyuk Kwon
학위논문 학위논문(박사) - 한국과학기술원 : 항공우주공학전공,
서지주기 참고문헌 : p. 85-89
주제 다중 격자 기법
수렴성
전산유체역학
MULTIGRID METHOD
CONVERGENCE
COMPUTATIONAL FLUID DYNAMICS
QR CODE qr code