서지주요정보
(A) multi-objective framework for dynamic QoE across users in video streaming = 비디오 스트리밍에서의 다중 및 동적 사용자 QoE를 위한 다목적 프레임워크
서명 / 저자 (A) multi-objective framework for dynamic QoE across users in video streaming = 비디오 스트리밍에서의 다중 및 동적 사용자 QoE를 위한 다목적 프레임워크 / Yajie Zhou.
발행사항 [대전 : 한국과학기술원, 2020].
Online Access 원문보기 원문인쇄

소장정보

등록번호

8036651

소장위치/청구기호

학술문화관(도서관)2층 패컬티라운지(학위논문)

MEE 20163

휴대폰 전송

도서상태

이용가능

대출가능

반납예정일

리뷰정보

초록정보

Optimizing for user quality of experience (QoE) is a prevailing approach to improving Internet video streaming. The effectiveness of adaptive bitrate (ABR) algorithms is often measured by a weighted combination of conflicting objectives, such as video quality, delay, and smoothness. We highlight the subjectivity of QoE reward formulation, which prevails, but results in various and discrete QoE metrics that assume a correct knowledge of user preferences. We propose MARVEL (A multi-objective approach to reinforcement “video experience” learning), a framework for reformulating QoE as a generalized multi-objective problem with dynamic weights, discarding the assumption of prior knowledge of user preferences. We employ a multi-objective reinforcement learning (MORL) based module within the framework, demonstrating an applied solution that adapts to dynamic user preferences (both across users and within the same session). In an experimental trial with randomized across possible user preferences weights, we show MARVEL learned the frontier solutions of different preferences on the two-dimensional metric. MARVEL outperforms previous RL-based approaches to ABR by 16% ∼ 39% in both adaptations and single objective analysis.

사용자 경험 품질(QoE)을 위한 최적화는 인터넷 비디오 스트리밍 개선에 대한 일반적인 접근방식이다. 적응 비트레이트(ABR) 알고리즘의 효과는 종종 비디오 품질, 지연 및 부드러움과 같은 상충되는 목표의 가중 조합에 의해 측정된다. 우리는 QoE 보상 제정의 주관성을 강조하는데, 이는 우세하지만, 사용자 선호에 대한 정확한 지식을 가정하는 다양하고 이산적인 QoE 메트로 이어진다. 사용자 선호에 대한 사전 지식의 가정을 버리고 동적 가중치로 QoE를 일반화된 다목적 문제로 개편하기 위한 프레임워크인 MARVEL("비디오 경험" 학습을 강화하기 위한 다목적 접근법)를 제안한다. 프레임워크 내에서 다목적 강화 학습(MORL) 기반 모듈을 채택하여 동적 사용자 선호(사용자 전체 및 동일한 세션 내에서)에 적응하는 적용 솔루션을 제시한다. 가능한 사용자 선호 가중치에 걸쳐 무작위화된 실험에서 우리는 MARVEL이 2차원 메트릭스에 대해 서로 다른 선호도의 프런티어 솔루션을 학습했음을 보여준다. MARVEL은 ABR에 대한 기존 RL 기반 접근방식을 적응과 단일 목표 분석에서 모두 16%~39% 앞섰다.

서지기타정보

서지기타정보
청구기호 {MEE 20163
형태사항 ii, 20 p. : 삽도 ; 30 cm
언어 영어
일반주기 저자명의 한글표기 : 주아결
지도교수의 영문표기 : Yung Yi
지도교수의 한글표기 : 이융
공동지도교수의 영문표기 : Dongsu Han
공동지도교수의 한글표기 : 한동수
학위논문 학위논문(석사) - 한국과학기술원 : 전기및전자공학부,
서지주기 References : p. 18-19
주제 Video streaming QoE
multi-objective optimization
user preferences adaptation
reinforcement learning
비디오 스트리밍 QoE
멀티벤더 최적화
사용자 기본 설정 적응
강화 학습
QR CODE qr code