For the change of the Army, the future infantry battalion concept was introduced to reinforce battalion-level combat. For example, decreasing the birth rate caused to decrease the number of combatants who could complete military service. Decreasing the number of combatants led to an increase in the size of a sector where one unit was responsible for operation, and to prevent the occurrence of a vacuum the weapons system attempted to make up for vacuums.
The purpose of the study is to find out if the reinforcement of the weapons system can effectively cope with the increase of the corresponding enemy, and if so, what would be the optimal quota for the subordinate forces. In particular, unlike the previous studies, the sub-units were modeled for each phase using Lanchester's law applying the combat performance method applied by the practical military system to find the optimal solution. However, because the formula is complex, the optimal solution is obtained as an approximate solution using the Runge-kutta method, and to reduce the time to find the optimal solution an algorithm that can reduce the time is suggested by using the simulated annealing algorithm. And it is checked that the which is better through the several experiments so that proposed algorithm might be better in real time in combat.
In addition, I tried to improve the current strategy established by tactical discussion and commander's unilateral guidance by establishing an optimal allocation strategy that can be universally applied to military by experimenting with various cases.
육군의 변화에 대응하기위해 차기 보병 대대 개념이 도입되었다. 이 연구의 목적은 무기체계의 강화가 대응해야 할 적 병력의 증가에 효과적으로 대처할 수 있는지, 그렇다면 그렇다면 예하 부대에 대한 최적의 할당량이 무엇인지 알아내는 것이다. 이를 위해 Lanchester의 법칙을 사용하여 예하부대 전투수행을 모델링했다. 또한 복잡한 미분방정식을 해결하기위해 수치적 접근방법으로 최적해를 얻었고, 해를 찾는데 소요되는 시간을 줄이기 위한 시뮬레이티드 어닐링 기법을 적용한 알고리즘이 제안하여 그 성능을 입증하였다.
또한 다양한 사례를 실험하여 군사에 보편적으로 적용 할 수있는 최적의 할당 전략을 수립하여 전술적 논의와 지휘관의 일방적 지침에 의해 수립 현 실태를 개선코자 하였다.