서지주요정보
Frequency-based change detection via multi-output log-gaussian cox processes = 다중채널 로그가우시안 콕스 프로세스를 활용한 빈도 기반 변화 탐지 기법 연구
서명 / 저자 Frequency-based change detection via multi-output log-gaussian cox processes = 다중채널 로그가우시안 콕스 프로세스를 활용한 빈도 기반 변화 탐지 기법 연구 / Joonho Bae.
저자명 Bae, Joonho ; 배준호
발행사항 [대전 : 한국과학기술원, 2019].
Online Access 원문보기 원문인쇄

소장정보

등록번호

8033638

소장위치/청구기호

학술문화관(도서관)2층 패컬티라운지(학위논문)

MIE 19008

SMS전송 소장위치

도서상태

이용가능

대출가능

반납예정일

초록정보

With the development of sensor technology and an avalanche of distributed sensors, the capability to describe patterns and detect change-points is a core skill in system monitoring and prognostics. When data takes the form of frequencies or the number of counts, counting processes such as Poisson processes have been extensively used for modeling. However, most of the existing frequency-based approaches rely on parametric models or deterministic frameworks, thus failing to consider the complex systems’ uncertainties with temporal and environmental contexts. Another challenge is analyzing interrelated multi-sensors simultaneously to detect change-points that cannot be found independently. This paper presents a multi-output log-Gaussian Cox process (MOLGCP) approach as a frequency-based change-point detection algorithm for real-time monitoring of dynamic systems. MOLGCP models the time-varying intensities of focal events defined over multiple correlated channels in a flexible and interpretable way. Cross-spectral mixture (CSM) kernels are used for model construction to capture both negative and positive correlations as well as the phase difference between channels. Adaptive and scalable decision-making strategies are suggested to identify anomalies in real-time. We show that computational complexities can be reduced and the method can be implemented for online purposes. Finally, extreme value theory (EVT) is used to set up dynamic thresholds considering the correlation between channels. Our method is validated with two different types of datasets: synthetic data and vibration data.

고객의 방문 횟수, 결제 거래 건수 등 데이터가 빈도의 형태를 띄는 경우 포아송 프로세스를 대표로 하는 추계모형을 활용한 분석이 널리 활용되어 왔다. 본 연구에서는 상관관계가 내재된 다중채널에서 관측되는 서로 다른 빈도들을 함께 모델링하는 다중채널 로그가우시안 프로세스를 제시한다. 이를 통해 빈도 기반의 변화탐지 기법을 새롭게 제시하고 시스템 진단 모형으로서의 활용성에 대해 논의한다.

서지기타정보

서지기타정보
청구기호 {MIE 19008
형태사항 37 p. : 삽도 ; 30 cm
언어 영어
일반주기 저자명의 한글표기 : 배준호
지도교수의 영문표기 : Jinkyoo Park
지도교수의 한글표기 : 박진규
학위논문 학위논문(석사) - 한국과학기술원 : 산업및시스템공학과,
서지주기 References : p. 34-35
주제 change-point detection
frequency change
log-Gaussian Cox process
system monitoring
extreme value theory
multi-output gaussian process
Cross-spectral mixture kernel
시스템 진단
변화탐지
로그가우시안 콕스 프로세스
다중채널 가우시안 프로세스
QR CODE qr code