  서지주요정보
확장된 유한차분형 수치기법을 이용한 나선형 스프링 동해석 = Dynamic analysis of a helical spring using an extended finite difference-type numerical scheme
서명 / 저자 확장된 유한차분형 수치기법을 이용한 나선형 스프링 동해석 = Dynamic analysis of a helical spring using an extended finite difference-type numerical scheme / 김성훈.
발행사항 [대전 : 한국과학기술원, 1994].
Online Access 원문보기 원문인쇄

등록번호

8004997

소장위치/청구기호

학술문화관(문화관) 보존서고

DME 94028

도서상태

이용가능

반납예정일

초록정보

In this study, all the translational and rotational dynamic motions of a helical spring described with heavily coupled partial differential equations are analyzed by using an extended finite difference-type numerical scheme. The proposed numerical scheme is a single-step, second-order accurate and implicit finite difference method. The stability, consistency and convergence are examined analytically with the second-order hyperbolic partial differential equation. Since a transformed difference equation is constructed using the displacement and known partial differential terms, the proposed numerical scheme can directly satisfy the natural boundary conditions and also the interpretation of the physical meanings of partial differential values is very easy. The proposed numerical scheme is easily applicable to high order partial differential equations, also coding and remeshing are very simple. From the numerical examples, it can be said that the proposed method is more accurate and effective than the already well-known finite difference methods. The moving load and moving boundary problems, space and time dependent systems, are prepared to demonstrate the validity and capability of the proposed numerical scheme. The moving load and moving boundary problems with variable moving velocities are effectively solved by using the proposed numerical scheme. The equations of motion for a spatially curved and twisted beam are derived and the forced transient responses of a helical spring having all translational and rotational motions are obtained by using the proposed numerical scheme. From these dynamic responses of a helical spring, it can be said that the coupling effects play an important role in the dynamic behavior of a helical spring. The static and dynamic analysis of a helical spring are verified by comparing with the result from ANSYS FEM package. Also the optimum vertical force to minimize the unwanted radial motion (side sway motions) of a helical spring is designed by optimizing the equations. The designed optimum vertical force point shows that the acting position deviated from the center of the helix in vertical direction, and the deviated optimum excitation force generates moments which cut off the effect of the radial motion. The radial motion is drastically reduced by the optimum vertical force and this result is very useful to the surface design of forcing plate facing to a helical spring. Since usual design optimization problems require heavy computational work, the proposed numerical scheme is very efficient in the computation efforts. Finally, a practical example of a helical spring, DOHC type cam-valve train with distributed parameter model of a valve spring, is illustrated. The valve response, contact force and valve spring force are accurately predicted and the guideline on ramp design using continuous impact force model is proposed.

서지기타정보

청구기호 {DME 94028 xiv, 169 p. : 삽도 ; 26 cm 한국어 부록 수록 저자명의 영문표기 : Sung-Hoon Kim 지도교수의 한글표기 : 박윤식 지도교수의 영문표기 : Youn-Sik Park 학위논문(박사) - 한국과학기술원 : 기계공학과, 참고문헌 : p. 153-160 Helical springs. Cams. Finite differences. Boundary value problems. 유한 차분법. --과학기술용어시소러스 나선형 스프링. --과학기술용어시소러스 경계치 문제. --과학기술용어시소러스 캠. --과학기술용어시소러스 동력학. --과학기술용어시소러스 Dynamic analysis.
QR CODE 