서지주요정보
Arbitrary lagrangian eulerian 방법에 근거한 탄소성, 대변형 해석에 있어서의 격자 조정 기법 = Remeshing techniques based on arbitrary lagrangian eulerian description for elasto-plastic, large deformation problems
서명 / 저자 Arbitrary lagrangian eulerian 방법에 근거한 탄소성, 대변형 해석에 있어서의 격자 조정 기법 = Remeshing techniques based on arbitrary lagrangian eulerian description for elasto-plastic, large deformation problems / 김지훈.
저자명 김지훈 ; Kim, Ji-Hun
발행사항 [대전 : 한국과학기술원, 1993].
Online Access 제한공개(로그인 후 원문보기 가능)원문

소장정보

등록번호

8003696

소장위치/청구기호

학술문화관(문화관) 보존서고

MME 93056

SMS전송

도서상태

이용가능

대출가능

반납예정일

초록정보

The arbitrary Lagrangian-Eulerian (ALE) approach and its finite element formulation are implemented for the analysis of nonlinear structures. In the ALE formulation material displacement is described as the sum of mesh displacement and relative displacement. The former is the Eulerian displacement by which we control meshes to reduce the numerical errors resulted from mesh distortions during the deformation process. And the latter represents the Lagrangian displacement that is concerned with the deformation. According to the ALE description, a computer program is developed for the static analysis of elastoplastic, large deformation problems. Two mesh controllers are included in the program. One is based on the Winslow algorithm which can be applied only to regular meshes. Another is the method proposed in this thesis for irregular meshes, which is an empirical algorithm based on the measure of mesh distortion and displacements in the previous loading step. Three examples are solved with and without mesh control. The results are in good agreement with those from the ABAQUS program but the mesh distortion is considerably reduced in case of controlled meshes. This illustrates that the ALE approach might be useful for problems where severe mesh distortion is anticipated. Further research will be required for the treatment of nonlinear boundary conditions and the refinement of the empirical algorithm.

서지기타정보

서지기타정보
청구기호 {MME 93056
형태사항 viii, 62 p. : 삽도 ; 26 cm
언어 한국어
일반주기 부록 : A, 유한요소 근사 행렬. - B, 구성 방정식의 재로 상수. - C, 접선예측 반경회귀 방법
저자명의 영문표기 : Ji-Hun Kim
지도교수의 한글표기 : 이병채
지도교수의 영문표기 : Byung-Chai Lee
학위논문 학위논문(석사) - 한국과학기술원 : 기계공학과,
서지주기 참고문헌 : p. 30-31
주제 Elastoplasticity.
Numerical grid generation (Numerical analysis)
Lagrange equations.
Nonlinear mechanics.
Lagrange 방정식. --과학기술용어시소러스
탄소성. --과학기술용어시소러스
큰 변형. --과학기술용어시소러스
격자 생성. --과학기술용어시소러스
비선형 역학. --과학기술용어시소러스
QR CODE qr code