서지주요정보
Automatic augmenting a knowledge base by inferring implicit entity-entity relationship = 개체간 암묵적 관계 추론을 통한 지식베이스 자동 증강
서명 / 저자 Automatic augmenting a knowledge base by inferring implicit entity-entity relationship = 개체간 암묵적 관계 추론을 통한 지식베이스 자동 증강 / Jinho Kim.
저자명 Kim, Jinho ; 김진호
발행사항 [대전 : 한국과학기술원, 2015].
Online Access 원문보기 원문인쇄

소장정보

등록번호

8028240

소장위치/청구기호

학술문화관(문화관) 보존서고

MWST 15004

SMS전송

도서상태

이용가능

대출가능

반납예정일

초록정보

A Knowledge Acquisition is an activity for extracting knowledge for a knowledge base. I propose a meth-odology to automatically acquire the knowledge for a knowledge base by analyzing graph structures. This methodology extracts new information by finding connected components in the graph converted from a knowledge base consisting of triples. In particular, the methodology has a differentiation from previous research, which can extract any relations between the given query entity pair without a pre-defined relation set. I newly define the problem as 'Open Knowledge Acquisition', it is to extract all the possible knowledge of a given entity pair, regardless of the pre-defined relation set. I used two datasets to evaluate the performance of this study. ReVerb Dataset, made from Open Information Extraction Paradigm, is a substantial data set which is most ap-propriate for the purpose of this thesis. The performance of the proposed method on ReVerb dataset outper-formed SHERLOCK and several baselines. Evaluation for the YAGO dataset showed a higher accuracy and a lower recall than the ReVerb dataset. This means the proposed method is applicable to any other knowledge base though it’s not from the Open Information Extraction paradigm.

지식 습득은 특정 지식베이스에 맞는 지식을 자동으로 추출하는 연구 영역이다. 본 논문에서는 그래프 구조 분석을 통해 새로운 지식을 습득하는 새로운 방법론을 제안한다. 제안하는 방법론은 지식베이스가 변환된 그래프에서 사이클 형태의 구조 탐색을 통해 새로운 지식을 추출한다. 특히 과거의 지식 습득 연구와는 다르게, 본 방법론은 사전 정의된 관계명 집합을 사용하지 않고 주어진 개체쌍에 대해 가능한 모든 관계명을 추출한다. 본 논문에서는 이 문제를 ‘개방형 정보 습득’이라는 새로운 문제로 정의한다. 개방형 정보 추출의 패러다임에 맞게 만들어진 ReVerb 데이터셋은 실질적으로 본 논문의 목적과 가장 적합한 데이터셋이다. ReVerb 데이터셋에 적용한 제안 방법론은 비교 방법론인 SHERLOCK과 여러 가지 베이스라인에 비해 높은 성능을 기록하였다. 또한 YAGO 데이터셋에 적용한 제안 방법론은 ReVerb에 비해 높은 정확도와 낮은 재현율을 기록하였는데, 이는 제안하는 방법론이 개방형 정보추출로 만들어진 지식베이스 외에도 적용 가능함을 의미한다.

서지기타정보

서지기타정보
청구기호 {MWST 15004
형태사항 v, 37 p. : 삽도 ; 30 cm
언어 영어
일반주기 저자명의 한글표기 : 김진호
지도교수의 영문표기 :Sung Hyon Myaeng
지도교수의 한글표기 : 맹성현
Including Appendix
학위논문 학위논문(석사) - 한국과학기술원 : 웹사이언스대학원,
서지주기 References : p.
주제 Open Knowledge Acquisition
Knowledge base expansion
Open Information Extraction
Implicit relation Inference
Knowledge Base
개방형 지식 습득
지식베이스 자동 확장
개방형 정보 추출
암묵적 관계 추론
지식베이스
QR CODE qr code