서지주요정보
직사각형관 및 회전 환상관을 이용한 직교장 유동분리시의 대류 물질전달 = Convective mass transfer in rectangular channels and rotating annular columns in the presence of polarizing fields
서명 / 저자 직사각형관 및 회전 환상관을 이용한 직교장 유동분리시의 대류 물질전달 = Convective mass transfer in rectangular channels and rotating annular columns in the presence of polarizing fields / 김은기.
저자명 김은기 ; Kim, Eun-Kee
발행사항 [서울 : 한국과학기술원, 1986].
Online Access 원문보기 원문인쇄

소장정보

등록번호

4103480

소장위치/청구기호

학술문화관(문화관) 보존서고

DCE 8601

SMS전송

도서상태

이용가능

대출가능

반납예정일

초록정보

In chapter I, the transient convective mass transfer in three dimensional rectangular channels in the presence of a transverse field is analyzed to include the time dependence of the convection and dispersion coefficients. The methodology of generalized dispersion theory is used to predict the breakthrough curves. The functions, $f_0$ and $f_1$, are determined by introducing a two-dimensional Strum-Liouville operator and this approach is used conveniently to generate a structurally neat analytical solution. In the practical field-flow fractionation (FFF) systems, the elution time of the constituents is not long enough for the value of the asymptotic dispersion coefficient to be used to predict the breakthrough curves. It is suggested that the side wall effects on the axial dispersion can not be neglected and a dispersion equation with time dependent coefficients is appropriately describable of the practical FFF systems. The approximate flow average concentration is obtained by using the resultant equation of the generalized dispersion theory. It is found that the large transverse Peclet number brings about the large difference between the breakthrough curves expressed in the flow average concentration and in the area average concentration used customarily in the past. Since the flow average concentration is measurable in real FFF system, the breakthrough curves should be expressed in that concentration when a comparison of theoretical predictions with experimental data is made. The generalized dispersion theory generates the useful solution of the convective diffusion equation in the area average concentration, but technical difficulties limit the implied construction in nonarea averages. This problem is avoided by separating the construction of the solution of the convective diffusion equation from the construction of dispersion approximations thereto. The general procedure of De Gance and John is followed to evaluate the dispersion approximations of arbitrary order in the area average and the flow average concentration. It also follows that the second-order dispersion approximation is constructed for the two-dimensional dispersion in rectangular FFF channels. The full time dependence of the first three dispersion coefficients is investigated. In chapter II, a new separation technique utilizing a slowly rotating annular open column with a transversely applied field is described. In this technique, the concept of a FFF is superimposed on the concept of a continuous annular chromatograph. In contrast to FFF using a rectangular channels, this rotating annular field-flow chromatograph (RAFFC) has no side wall effects on the solute dispersion. It has no peak broadening due to the lateral flow, even though the broadening is observed in a continuous free-film electrophoresis because of an electroosmotic flow. The resolution in the RAFFC with a continuous feed is not affected by the axial convective dispersion, which is a primary factor for the dispersion in FFF. A mathematical model is used to describe the concentration profiles at the exit of a RAFFC. Dispersion approximations have been constructed on the basis of the flow average concentration and the area average concentration by applying the Hermite moment method instead of the generalized dispersion theory. The effects of rotation rate, eluent velocity, column size and field strength are predicted to show how they affects the performance of the RAFFC system.

서지기타정보

서지기타정보
청구기호 {DCE 8601
형태사항 x, 126 p. : 삽도 ; 26 cm
언어 한국어
일반주기 부록 수록
저자명의 영문표기 : Eun-Kee Kim
지도교수의 한글표기 : 정인재
지도교수의 영문표기 : In-Jae Chung
학위논문 학위논문(박사) - 한국과학기술원 : 화학공학과,
서지주기 참고문헌 : p. 114-121
주제 Dispersion.
Mathematical model.
물질 이동. --과학기술용어시소러스
분산. --과학기술용어시소러스
수학 모델. --과학기술용어시소러스
Mass transfer.
QR CODE qr code