서지주요정보
마찰접촉문제에서의 민감도해석 및 최적설계 = Sensitivity analysis and optimal design for frictional contact problems
서명 / 저자 마찰접촉문제에서의 민감도해석 및 최적설계 = Sensitivity analysis and optimal design for frictional contact problems / 임세빈.
저자명 임세빈 ; Im, Se-Bin
발행사항 [대전 : 한국과학기술원, 1992].
Online Access 제한공개(로그인 후 원문보기 가능)원문

소장정보

등록번호

8003196

소장위치/청구기호

학술문화관(문화관) 보존서고

DME 92009

휴대폰 전송

도서상태

이용가능

대출가능

반납예정일

리뷰정보

초록정보

A numerical procedure is developed for the sensitivity analysis with respect to problem parameters or design variables for contact problems with the Coulomb friction. Using the sensitivity results with respect to a loading scale parameter, an efficient incremental analysis technique for the frictional contact is presented. Also, a shape design sensitivity analysis for the frictional contact problem is proposed using the material derivative concept and the direct differentiation method. The design of initial separation for minimizing the maximum contact stress is considered. For completeness, a general kinematic description with an updated Lagrangian formulation is adopted and finite element method is used for discretization. Kinematic variables such as contact gap and slip have complementarity relations with contact force and friction force. The resulting complementarity becomes linear for a two dimensional contact with the Coulomb friction. Since the linear complementarity problem(LCP) can be transformed to an equivalent minimization problem, sensitivity formulas abtained from the sensitivity analysis for a parametric optimal design(POD) are applicable. It is shown that the sensitivity analysis results of the basic solutions are obtained by pivoting sensitivity vectors of active constraints in the equivalent minimization problem according to the modified simplex solution scheme of LCP. The variations of the non-basic solutions are zero because of the fact that the set of active constraints is not changed for small perturbations of problem parameters. For a degenerate case, different sensitivity matrices are obtained which denote directional derivatives at the solution point. In frictional contact problem, an incremental analysis is inevitable because of the nonlinearity and the non-uniqueness of the solution to a given level of external load. Since the physical state is unique for a given path of loading, the problem is how to guarantee the correct path numerically. An incremental analysis is proposed, which determines the size of an incremental step using the sensitivity analysis with respect to loading scale parameter. Several illustrative numerical examples have been tested. From a problem with loading and unloading, it is shown that a non-uniqueness solution can be obtained when incremental steps selected differently. A layer pressed against a half-plane by a uniform pressure and subjected to a tangential force varying periodically in time is simulated and compared with the analytical solution. The computational results are in good agreements with the analytical ones and residual frictional stress effects such as shake down phenomena have been shown. As an application of the method, a valve-cotter system of a motorcycle engine subject to a periodic loading has been analyzed as an axisymmetric three body contact problem. The sensitivity of contact stresses with the change of the contact contour is also derived. For numerical examples, initial separation between a piston rod and a pin has been obtained to minimize the maximum contact pressure. And, initial separation between a valve and a cotter has been designed to reduce the stress concentration considering element stress functionals. The contact stress is found highly sensitive to the change of initial gap. The stiffness matrices are assumed not changing even with the contour variation due to its smallness. With the correct determination of the step size, the present incremental analysis technique has been shown to be efficient and capable of following complex response histories. The step size determination in the case of material and other geometric nonlinearities such as large elasto-plastic deformation remains as a future topic.

서지기타정보

서지기타정보
청구기호 {DME 92009
형태사항 vii, 112 p. : 삽도 ; 26 cm
언어 한국어
일반주기 부록 : A, 기본적인 전미분(material derivative)식
저자명의 영문표기 : Se-Bin Im
지도교수의 한글표기 : 곽병만
지도교수의 영문표기 : Byung-Man Kwak
학위논문 학위논문(박사) - 한국과학기술원 : 기계공학과,
서지주기 참고문헌 : p. 57-64
주제 Friction.
Linear complementarity problem.
Nonlinear mechanics.
최적 설계. --과학기술용어시소러스
감도 해석. --과학기술용어시소러스
마찰. --과학기술용어시소러스
접촉 응력. --과학기술용어시소러스
상보성. --과학기술용어시소러스
Optimal designs (Statistics)
QR CODE qr code