서지주요정보
Analytical asymptotic extraction technique for bend discontinuity = 굽은 불연속 구조 해석의 가속 연산 알고리즘에 관한 연구
서명 / 저자 Analytical asymptotic extraction technique for bend discontinuity = 굽은 불연속 구조 해석의 가속 연산 알고리즘에 관한 연구 / Chan-Byoung Chae.
저자명 Chae, Chan-Byoung ; 채찬병
발행사항 [대전 : 한국정보통신대학교, 2001].
Online Access 원문보기 원문인쇄

소장정보

등록번호

DM0000151

소장위치/청구기호

문지도서관2층 학위논문

ICU/MS01-47 2001

SMS전송 소장위치

도서상태

이용가능

대출가능

반납예정일

초록정보

The conventional spectral domain method is too time-consuming to fill the impedance matrix elements because the matrix elements are expressed in terms of infinite double integrals and their integrands exhibit slow convergence and highly oscillating behavior. In the previous research of gap discontinuities, park had successfully derived the analytical transformation of the infinite double integral into a finite one-dimensional integral in calculating the asymptotic impedance matrix elements. This showed the dramatic improvement of the computation time for evaluating the overall impedance matrix elements without sacrificing the accuracy. With extension of the previous work, this dissertation presents efficient computational techniques in case of right-angled bend discontinuity. In order to describe the unknown current distribu-tions, two kinds of expansion functions are used. It is used to describe the current density distribution in regions containing and bordering right-angled bend microstrip junction. In such regions, the current is represented by overlapping rooftop functions with the transverse and longitudinal directions. In this problem, the most time consuming part of filling the matrix elements is the field interactions between rooftops and half rooftops basis functions. Also the matrix element evaluations of the interactions between rooftop and half rooftop basis functions requires extensive computation time, but relatively less than the previous case. To overcome this computation time, we developed new analytical formulas for evaluating the asymptotic impedance matrix by using the above integral transform method. We show that the derived analytical techniques significantly reduce the computational time and improve the accuracy over the conventional method to evaluate the asymptotic part of impedance matrix by eliminating the truncation error for solving right-angled bend discontinuity. To validate this new approach, the commercial software data will be compared with those of our theoretical results.

평판형 구조물에 대한 수치 해석은 주로 모멘트 법을 이용하여 이루어져 왔다. 특히 닫힌 형태의 그린 함수를 이용하여 주파수 영역에서 계산되어 졌는데, 이 경우 임피던스 매트릭스를 구하는 과정에서 많은 계산 시간이 요구되었다. 이에 2중 무한 적분을 취하는 임피던스 매트릭스를 유한 1차 적분으로 계산 할 수 있는 연산 알고리즘을 개발, 평판형 구조물의 굽은 불연속 구조에 적용하고 이를 실험 및 다른 시뮬레이션 결과와 비교 분석하였다.

서지기타정보

서지기타정보
청구기호 {ICU/MS01-47 2001
형태사항 ix, 61 p. : 삽도 ; 26 cm
언어 영어
일반주기 저자명의 한글표기 : 채찬병
지도교수의 영문표기 : Seong-Ook Park
지도교수의 한글표기 : 박성욱
학위논문 학위논문(석사) - 한국정보통신대학원대학교 : 공학부,
서지주기 References : p. 46-49
주제 MoM
Green's function
모멘트법
그린함수
QR CODE qr code