서지주요정보
하모닉 웨이블릿 변환해석을 이용한 표면파 실험분산곡선 결정 방법에 관한 연구 = Development of field experimental dispersion curves using harmonic wavelet analysis of waves
서명 / 저자 하모닉 웨이블릿 변환해석을 이용한 표면파 실험분산곡선 결정 방법에 관한 연구 = Development of field experimental dispersion curves using harmonic wavelet analysis of waves / 원지현.
저자명 원지현 ; Won, Ji-Hyun
발행사항 [대전 : 한국과학기술원, 2003].
Online Access 원문보기 원문인쇄

소장정보

등록번호

8014039

소장위치/청구기호

학술문화관(문화관) 보존서고

MCE 03012

휴대폰 전송

도서상태

이용가능

대출가능

반납예정일

초록정보

The spectral analysis of surface waves (SASW) method, which is based on dispersive characteristics of surface waves, is an in-situ seismic method for determining the shear wave velocity (or, maximum shear modulus) profile of a site. Most of the surface wave energy exists within one wave length of depth, and in layered media, the surface wave propagation depends on the frequency (or, wavelength) of the wave because waves of different wave lengths sample different parts of the layered medium. The reliable determination of phase velocities with wavelength (or, frequency) is the most important task in SASW method. In some field conditions when various noises exist in the field, however, determination of experimental dispersion curve is a difficult task and the usual phase unwrapping method can lead to erroneous dispersion curve. The new method of evaluating the experimental dispersion curve was proposed using harmonic wavelet transform in the time-frequency domain. Harmonic wavelet analysis of waves (HWAW) method mainly uses the signal portion of maximum signal/noise ratio to evaluate the phase velocities and it can minimize effects of noises. HWAW method is less affected by the near field effect and can sample much deeper part of the site than the conventional phase unwrapping method at a given receiver spacing. HWAW method was verified through the numerical simulations at the various kinds of multi-layered system. To apply HWAW method in the determination of experimental dispersion curves, the various field testing setups were investigated for the optimization of testing parameters. The source to first receiver(S-R) spacing and receiver to receiver(R-R) spacing were selected as the important parameters and the optimized S-R and R-R spacings were determined as 5~10m and 0.5~1.0m, respectively. The near field effect, the source energy, the attenuation of high frequency contents, the similarity of the wave groups of two receiver signals were considered in the determination of S-R spacing and R-R spacing. Once the testing procedures are optimized, test results obtained by the HWAW method were compared with the results obtained by other seismic tests including conventional SASW and downhole tests at two sites. Experimental dispersion curves determined by HWAW method match nicely with those obtained by other seismic methods showing the reliability of the proposed method. Also, HWAW reduces the testing and processing times to obtain the experimental dispersion curves compares with conventional SASW method and shows the possibility of future automation.

서지기타정보

서지기타정보
청구기호 {MCE 03012
형태사항 [viii], 80 p. : 삽도 ; 26 cm
언어 한국어
일반주기 저자명의 영문표기 : Ji-Hyun Won
지도교수의 한글표기 : 김동수
공동교수의 한글표기 : 이승래
지도교수의 영문표기 : Dong-Soo Kim
공동교수의 영문표기 : Seung-Rae Lee
학위논문 학위논문(석사) - 한국과학기술원 : 건설및환경공학과,
서지주기 참고문헌 : p. 77-80
주제 하모닉 웨이블릿
harmonic wavelet
QR CODE qr code