서지주요정보
Sampling theory on Bernstein spaces = Bernstein 공간에서의 sampling 이론
서명 / 저자 Sampling theory on Bernstein spaces = Bernstein 공간에서의 sampling 이론 / Sun-Hee Yoon.
저자명 Yoon, Sun-Hee ; 윤선희
발행사항 [대전 : 한국과학기술원, 2003].
Online Access 원문보기 원문인쇄

소장정보

등록번호

8013805

소장위치/청구기호

학술문화관(문화관) 보존서고

MMA 03011

SMS전송

도서상태

이용가능

대출가능

반납예정일

초록정보

Sampling theory is studied by many people because of its mathematical interest and because of its importance for applications in the engineering. The main concerns of sampling theory are the followings: the space of functions which can be expressed as a series, sampling points, convergence, error estimation. Sampling theory is based on Shannon-Whittaker-Kotel`nikov sampling theorem. In this thesis, the main topic is to survey the important results of the sampling theory in Bernstein space. Bernstein space is closely related with Paley-Wiener space and a function of Paley-Wiener space is represented by some Fourier transform of functions with compact support. Kramer`s lemma gives some generalization for sampling formula for functions represented by some integral transform. And we give a convergence principle by the properties of Paley-Wiener space. And we survey the important results for irregular sampling with nonuniform sample. These results are developed by the theory of Riesz basis and we get a sampling formula that is similar to Lagrange interpolation formula. Finally, we will give a brief introduction for 1-channel and 2-channel sampling with some transformed data.

샘플링 이론은 수학 자체로도 흥미있고, 공학 분야를 응용하는 데에도 중요한 역할을 하기 때문에 많이 연구하고 있다. 여기서 관심있는 주제들은 다음과 같다. 샘플링 공식을 이용해 함수를 재구성할 수 있는 공간은 어떤 것들이 있는가? 샘플을 어떻게 뽑을 것인가? 샘플링 공식의 수렴성은 어떠한가? 샘플링 공식의 오차를 어떻게 추정할 것인가? 샘플링 이론은 Shannon-Wittaker-Kotel`nikov의 샘플링 정리를 중요한 근간으로 발전해왔다. 이 논문에서는 보다 발전한 형태인 Bernstein 공간에서의 중요한 샘플링 정리를 소개하고자 한다. Bernstein 공간은 Paley-Wiener 공간과 밀접한 관계를 갖고 있고 Paley-Wiener 공간의 함수들은 compact support를 갖는 함수의 푸리에 변환으로 나타난다. 한편, Kramer의 보조정리를 통해 다른 적분변환으로 표현할 수 있는 함수에 대해 샘플링 정리를 일반화할 수 있음을 소개하며 Paley-Wiener 공간의 성질을 통해 샘플링 공식의 수렴성에 대해 언급한다. 그리고, 균일 간격이 아닌 샘플로 얻을 수 있는 샘플링 공식을 소개한다. 이는 Riesz 기저의 이론을 통해 발전시킬 수 있으며, 이로 인해 얻게 되는 샘플링 공식이 일반적으로 알려진 Lagrange 보간법과 같은 형태가 됨을 소개한다. 마지막으로 변환된 함수의 샘플을 이용해 원래의 함수를 재구성하는 샘플링 공식으로서 1-채널 2-채널 샘플링 공식을 간단히 소개한다.

서지기타정보

서지기타정보
청구기호 {MMA 03011
형태사항 iii, 25 p. ; 26 cm
언어 영어
일반주기 저자명의 한글표기 : 윤선희
지도교수의 영문표기 : Kil-Hyun Kwon
지도교수의 한글표기 : 권길헌
학위논문 학위논문(석사) - 한국과학기술원 : 응용수학전공,
서지주기 Includes reference
주제 Sampling
샘플링
QR CODE qr code