서지주요정보
효율적인 임계 암호시스템 구현을 위한 능동적 비밀 분산에서의 빠른 공유 갱신 프로토콜에 관한 연구 = Practical share renewal scheme in proactive secret sharing for efficient threshold cryptosystem
서명 / 저자 효율적인 임계 암호시스템 구현을 위한 능동적 비밀 분산에서의 빠른 공유 갱신 프로토콜에 관한 연구 = Practical share renewal scheme in proactive secret sharing for efficient threshold cryptosystem / 이윤호.
발행사항 [대전 : 한국과학기술원, 2002].
Online Access 원문보기 원문인쇄

소장정보

등록번호

8013099

소장위치/청구기호

학술문화관(문화관) 보존서고

MCS 02028

휴대폰 전송

도서상태

이용가능(대출불가)

사유안내

반납예정일

등록번호

9008817

소장위치/청구기호

서울 학위논문 서가

MCS 02028 c. 2

휴대폰 전송

도서상태

이용가능(대출불가)

사유안내

반납예정일

리뷰정보

초록정보

The secret sharing is the basic conecpt of the threshold cryptosystem that divides the single private key in the public key cryptosystem to protect the private key. It is applied to many cryptograhpic applications like the electronic voting , group signature and broadcast encryption. And for its subfield, the (k,n) threshold scheme is defined that at least k of the n shares need to reconstruct the secret information. The proactive secret sharing is the solution of the existing of the mobile adversary that attacks the entire system in each period of time. The essance of the proactive secret sharing is that the participants perform the share renewal operation in each period before the mobile adversary has the shares more than the threshold values. So if the adversary doesn't have the shares more than threshold value in one share renewal period, They must recollect the shares. The shares that collects in the old period makes useless by the share renewal operation. In 1995, Jarecki proposed the share renewal scheme for the proactive secret sharing in (k,n) threshold scheme. But his method needs $O(n^2)$ modular exponentiation per one paticipant. It is very high computational cost and does not fit the scalable cryptosystem that has 100 or more participants. In the thesis, we propose the efficient share renewal scheme that need $O(n)$ modular exponentiation per each participant. In old scheme, the participants in the protocol have the k private value each. But our scheme needs only constant private value per each participant. So they need only $O(n)$ modular exponentiation to verify the private values of all the other participants. Our scheme is more efficient performance if the k value is more than 7. In general, the k value is in $\frac{1}{3}~\frac{1}{2}n$. So if the participants are more than 14~21, our scheme is faster than the old scheme. For the proving the security of our scheme, we use the simlator using the random oracle model. By using the simulator, we proves that our scheme is secure if the less than $k~(\frac{1}{2}n-1)$ adversaries exist and they are static adversaries.

서지기타정보

서지기타정보
청구기호 {MCS 02028
형태사항 [ii], 42 p. : 삽화 ; 26 cm
언어 한국어
일반주기 저자명의 영문표기 : Youn-Ho Lee
지도교수의 한글표기 : 윤현수
지도교수의 영문표기 : Hyun-Soo Yoon
학위논문 학위논문(석사) - 한국과학기술원 : 전산학전공,
서지주기 참고문헌 : p. 40-41
QR CODE

책소개

전체보기

목차

전체보기

이 주제의 인기대출도서