A novel method to reduce additive non-stationary noise is proposed. The method requires neither the information about noise nor the estimate of the noise statistics from any pause regions. The enhancement is performed on a band-by-band basis for each time frame. Based on both the decision on whether a particular band in a frame is speech or noise dominant and the masking property of the human auditory system, an appropriate amount of noise is reduced using spectral subtraction. The proposed method was tested on various noisy conditions(car noise, F16 noise, white Gaussian noise, pink noise, tank noise and babble noise.), and on the basis of comparing segmental SNR with spectral subtraction method and visually inspecting the enhanced spectrograms and listening to the enhanced speech, the method was able to effectively reduce various noise while minimizing distortion to speech.
A novel method to reduce noise using voice/unvoice classification is proposed. Voice and unvoice are an important feature of speech and the proposed method processes noisy speech differently for each voice/unvoice part. Speech is classified into voice/unvoice using zero-crossing rate and energy, and a modified speech/noise dominant-decision is proposed based on voice/unvoice classification. The proposed method was tested on conditions of white noise and airplane noise, and on the basis of comparing segmental SNR with the existing method and listening to the enhanced speech, a performance of the proposed method was superior to that of the existing method.