서지주요정보
최적화된 집적유한차분을 이용한 고차의 정확도와 고해상도를 갖는 유한 체적법의 연구 = A study on optimized compact finite volume scheme
서명 / 저자 최적화된 집적유한차분을 이용한 고차의 정확도와 고해상도를 갖는 유한 체적법의 연구 = A study on optimized compact finite volume scheme / 김용제.
저자명 김용제 ; Kim, Yong-Jea
발행사항 [대전 : 한국과학기술원, 2001].
Online Access 원문보기 원문인쇄

소장정보

등록번호

8011715

소장위치/청구기호

학술문화관(문화관) 보존서고

MAE 01005

휴대폰 전송

도서상태

이용가능

대출가능

반납예정일

리뷰정보

초록정보

Computational Aeroacoustics (CAA) requires accurate and stable schemes for solving acoustic and flow field directly. Those schemes have a high-order of truncation and high-resolution characteristics in the evaluation of spatial derivatives, have the GRID stability and maintain numerical or physical conservation properties. Optimized high-order compact (OHOC) schemes, which have high resolution and low dissipation-dispersion error, have been developed and applied for Computational Aeroacoustics (CAA) problems. Previously, the optimized high-order compact (OHOC) schemes are applied as finite difference schemes. However, Most of finite difference schemes have difficulties in obtaining flow properties especially for non-smoothing GRID. In this thesis, the optimized high-order compact (OHOC) schemes are studied for finite volume schemes, which is insensitive to the GRID system in general. Special treatment of surface boundary condition is contrived in applying the Ghost Cell method, which is established according to normal flux derivatives at the boundary. For suppressing the numerical oscillations due to the discontinuities in the central schemes, an adaptive nonlinear artificial dissipation (ANAD) is used. OHOC scheme, for a finite volume scheme, is validated in 1-D linear wave problem, shock tube problem and 2-D Nozzle problem. A simple flow with acoustic perturbations is also solved with both the finite difference and the finite volume OHOC scheme. Two schemes are compared especially for a GRID system in which the interval of GRID changes suddenly. Finite volume OHOC scheme obtains more stable and accurate solutions than finite difference OHOC scheme.

서지기타정보

서지기타정보
청구기호 {MAE 01005
형태사항 ii, 62 p. : 삽도 ; 26 cm
언어 한국어
일반주기 저자명의 영문표기 : Yong-Jea Kim
지도교수의 한글표기 : 이덕주
지도교수의 영문표기 : Duck-Joo Lee
학위논문 학위논문(석사) - 한국과학기술원 : 항공우주공학전공,
서지주기 참고문헌 : p. 44-45
주제 집적유한차분
유한체적법
Compact
Finite Volume
QR CODE qr code