서지주요정보
(The) relation between the quadratic representation of a prime and binomial coefficients = 소수의 이차표현과 이항계수와의 관계
서명 / 저자 (The) relation between the quadratic representation of a prime and binomial coefficients = 소수의 이차표현과 이항계수와의 관계 / Dong-Hoon Lee.
발행사항 [대전 : 한국과학기술원, 2000].
Online Access 원문보기 원문인쇄

등록번호

8010806

소장위치/청구기호

학술문화관(문화관) 보존서고

DMA 00006

도서상태

이용가능

반납예정일

초록정보

In this thesis, we consider the problem due to Gauss. When a prime can be represented as quadratic form, the first term is congruent to a product of binomial coefficients. In chapter 1, we introduce the history of the results about this problem and define some notations which are needed in the following chapters. In chapter 2, we describe the properties of some special sums, e.g. Gauss sums, Jacobi sums and Eisenstein sums, and p-adic gamma function. They play an important role to prove our main theorem in chapter 3. To relate the Gauss sums with binomial coefficients, we use Gross-Koblitz formula. In chapter 3, We generalize the problem of Gauss to the primes of the form p=tn+r when p splits as $\mathfrak{p}_1 \mathfrak{p}_2$ in $\mathbb{Q}(\sqrt{-t})$. When a prime can be represented as quadratic form, the first term is congruent to a product of binomial coefficients. Let $q=p^f$ where f is the order of r modulo t, $χ = ω^{\frac{q-1}{t}}$ where ω is the Teichm$ü$ller character on $\mathbb{F}_q$ and g(χ) be the Gauss sum. For suitable $τ_i ∈ Gal(\mathbb{Q}(ζ_t, ζ_p)/\mathbb{Q})$ $(i=1, …, g)$, we show that ◁수식 삽입▷(원문을 참조하세요) such that $4p^h = a^2 + tb^2$ for some integers a and b where h is the class number of $\mathbb{Q}(\sqrt{-t})$. And we explicitly compute a mod t (or t/4) and a mod p, in particular, a is congruent to a product of binomial coefficients modulo p. In chapter 4, we give some examples.

가우스로부터 유래된 문제를 p=tn+r인 형태의 소수가 $\mathbb{Q}(\sqrt{-t})$ 위에서 $\mathfrak{p}_1 \mathfrak{p}_2$로 나누어질 때로 확장하였다. 소수 p가 이차형식으로 표현될 때, 그 첫번째 항은 이항계수들의 곱과 합동이다. r의 법 t로의 위수를 f라고 할 때, $q=p^f$라고 하고, ω를 $\mathbb{F}_q$ 위에서의 Teichm$ü$ller 캐릭터라고 할 때, $χi = ω^{\frac{q-1}{t}}$라고 하고, g(χ)를 가우스 합이라고 하자. 적당한 $τ_i ∈ Gal(\mathbb{Q}(ζ_t, ζ_p)/\mathbb{Q})$ (i=1, …, g)에 대해서 다음을 보일 수 있다. $\prod_{i=1}^g τ_i (g(χ)) = p^α( \frac{a + b \sqrt{-t}}{2}).$ 단 여기서 어떤 정수 a와 b에 대해서 $4p^h = a^2 + tb^2$를 만족하며 h는 $\mathbb{Q}(\sqrt{-t})$의 class 수이다. 그리고 구체적으로 a mod t (혹은 t/4) 와 a mod p를 계산하였다. 특히 a는 적당한 이항계수들의 곱과 법 p로 합동이다.

서지기타정보

청구기호 {DMA 00006 v, 34 p. : 삽도 ; 26 cm 영어 저자명의 한글표기 : 이동훈 지도교수의 영문표기 : Sang-Geun Hahn 지도교수의 한글표기 : 한상근 학위논문(박사) - 한국과학기술원 : 수학전공, Reference : p. 33-34 Gauss sums Jacobi sums Eisenstein sums Binomial coefficients 가우스 합 자코비 합 아이젠슈타인 합 이항계수
QR CODE