서지주요정보
Nonconforming multigrid method for nonsymmetric and indefinite problems = 비대칭 부정 문제에 대한 부접합 다중격자법
서명 / 저자 Nonconforming multigrid method for nonsymmetric and indefinite problems = 비대칭 부정 문제에 대한 부접합 다중격자법 / Yoon-Jung Yon.
저자명 Yon, Yoon-Jung ; 연윤정
발행사항 [대전 : 한국과학기술원, 1996].
Online Access 원문보기 원문인쇄

소장정보

등록번호

8006647

소장위치/청구기호

학술문화관(문화관) 보존서고

DMA 96003

SMS전송

도서상태

이용가능

대출가능

반납예정일

초록정보

This thesis is devoted to numerical analysis of multigrid methods for solving linear systems arising from the approximation to partial differential equations using P1-nonconforming finite elements. There have been two types of nonconforming multigrid algorithms for solving the symmetric positive definite problems. The first one exploits the nonconforming finite elements in both smoothing iterations and coarse-grid corrections in the multilevel iteration. The second one uses the nonconforming finite elements in the smoothing iterations on the finest level, but conforming finite elements in the coarse-grid corrections. We extend the nonconforming multigrid methods to the nonsymmetric and/or indefinite problems and show that the rate of convergence is optimal. We also consider the two-level additive Schwarz preconditioner for nonconforming finite element spaces applied to nonsymmetric and/or indefinite problems and show that the rate of convergence is optimal. We also consider the two-level additive Schwarz preconditioner for nonconforming finite element spaces applied to nonsymmetric and/or indefinite problems. We show that the rate of convergence is independent of the number of degrees of freedom and the number of local problems if the coarse mesh is fine enough.

서지기타정보

서지기타정보
청구기호 {DMA 96003
형태사항 vi, 61 p. : 삽도 ; 26 cm
언어 영어
일반주기 저자명의 한글표기 : 연윤정
지도교수의 영문표기 : Do-Young Kwak
지도교수의 한글표기 : 곽도영
학위논문 학위논문(박사) - 한국과학기술원 : 수학과,
서지주기 Reference : p. 56-61
주제 Nonconforming Element
Multigrid Method
Nonsymmetric and Indefinite Problems
Additive Schwarz Method
Conforming Element
부접합 요소
다중격자법
비대칭
부정 문제
슈바르츠 방법
접합 요소
QR CODE qr code