서지주요정보
유한시간 사이클을 이용한 저온열 증기 동력기관의 이론적 최적화 = Finite-time optimizations of low-grade vapor power cycle heat engines
서명 / 저자 유한시간 사이클을 이용한 저온열 증기 동력기관의 이론적 최적화 = Finite-time optimizations of low-grade vapor power cycle heat engines / 이원용.
발행사항 [대전 : 한국과학기술원, 1991].
Online Access 원문보기 원문인쇄

소장정보

등록번호

8002296

소장위치/청구기호

학술문화관(문화관) 보존서고

DME 9124

휴대폰 전송

도서상태

이용가능(대출불가)

사유안내

반납예정일

리뷰정보

초록정보

Owing to an increased shortage of energy resources, much attention has been focused on an improved utilization of the energy input in energy conversion-process. Thus, it is important to formulate the appropriate criteria for thermal efficiency in planning and implementing methods for energy conservation. This paper is concerned with a low grade vapor power cycle which is suitable for energy sources of low temperature such as a solar-thermal, a geothermal or an ocean thermal energy resources. Using the finite-time optimization method, an analytical formulae are developed for estimating the upper limit of heat engine performance, which can be extracted from the given heat-capacity rates of heating and cooling fluids. Optimization implies proper choice of operating temperatures of the working fluid and the optimal allocation fraction of the heat conductance rates between the heating and cooling fluids to obtain maximum power output. The efficiency at maximum power formulated in this paper is compared with observed efficiencies of actual power plants and also numerical results which are calculated with detailed thermodynamic properties of organic working fluids. In order to improve the energy-conversion performance of a classical Rankine heat engine, non-azeotropic multi-component working fluid cycle (Lorentz cycle) and multi-staged vapor power cycle are suggested. It is found that the maximum power of the Lorentz cycle is twice as larger as that of the Carnot cycle for a given pinch-temperature difference. This result illustrates the advantages in using the multicomponent working fluid cycle over the Rankine cycle. It is also seen that the available work from a heat source with finite heat capacity rates in increased with the number of heat engines, which represents the importance of recovery or bottoming process in the optimization of work production systems. Using the heat engine efficiency at maximum power, the overall efficiency of practical solar thermal power plants is investigated for estimating the upper limit of their performances. The formulae derived in this paper provide a useful guide to the achievable performance for real power-conversion systems.

서지기타정보

서지기타정보
청구기호 {DME 9124
형태사항 x, 154 p. : 삽화 ; 26 cm
언어 한국어
일반주기 저자명의 영문표기 : Won-Yong Lee
지도교수의 한글표기 : 김상수
지도교수의 영문표기 : Sang-Soo Kim
학위논문 학위논문(박사) - 한국과학기술원 : 기계공학과,
서지주기 참고문헌 : p. 96-107
주제 Heat-engines
Energy conservation
Solar thermal energy
Energy transfer
최적화 --과학기술용어시소러스
열 기관 --과학기술용어시소러스
에너지 변환 --과학기술용어시소러스
열 용량 --과학기술용어시소러스
에너지 절약 --과학기술용어시소러스
Optimization
QR CODE

책소개

전체보기

목차

전체보기

이 주제의 인기대출도서